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Rigorous Boundary Integral Equation Solution

for General Isotropic and Uniaxial Anisotropic

Dielectric Waveguides in Multilayered Media

Including Losses, Gain and Leakage
Frank Olyslager, Student Member, IEEE, and Daniel De Zutter, Member, IEEE

Abstract—Bounded and leaky eigenmodes of arbitrary shaped
polygonal dielectric waveguides embedded in a multilayered
medium are determined based on a rigorous full-wave analysis.
The dielectric wavegnides consist of isotropic or uniaxial aniso-

tropic material. Losses and gain inside the layers and the

waveguides are allowed. The eigenmodes are determined with

a bouudary integral equation technique in conjunction with the

method of moments. Results for the propagation constants are

presented for a number of waveguides and, where possible,

compared with published data. Special attention is devoted to the

transition from a dielectric waveguide to a perfectly conducting
waveguide when the loss tangent of the waveguide material

changes from zero to infinity.

I. INTRODUCTION

I N [1] and [2] a rigorous analysis of the propagation

characteristics of general lossless and lossy multiconduc-

tor transmission lines in multilayered media was presented.

In this contribution, the authors would like to extend the

technique presented in [1] and [2] to dielectric waveguides.

The boundary integral equation presented in [1] is extended

to uniaxial anisotropic waveguides with the optical axes along

the propagation direction. The method of moment Galerkin

solution technique of the integral equation is the same as in

[1] and will not be repeated in detail here.

Dielectric waveguides have been investigated by a large

number of authors, using a multitude of different methods.

We will restrict ourselves to giving a short overview of the

most important analysis techniques and discuss the properties

of our technique compared to these techniques. A more

extensive ‘discussion of various techniques can be found in

the Introduction of [3] and in [4] where a number of different

techniques were used to analyze optical waveguides.

Several authors used the mode-matching technique to ana-

lyze open and closed dielectric waveguide structures. How-

ever, these methods are restricted to waveguides consisting

of piecewise rectangular homogeneous regions. Finite element

(FEM) and finite difference methods (FDM), used for example

in [5], allow inhomogeneous regions but do not incorporate

leakage. The finite difference time domain (FDTD) and the
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transmission line method (TLM) suffer from the lack of

accurate absorbing boundary conditions and are not very suited

for frequency domain calculations with frequency-dependent

material parameters and to handle losses due to the skin effect.

Dielectric waveguides in multilayered media have also been

analyzed with good success with domain ifitegral equation

(DIE) techniques [3], [6]. In [3] and [6] a rnethctl of moments

technique combined with Galerkin is used. This technique is

very suitable to analyze inhomogeneous waveguides because

in the moment method the cross-section of the waveguide

is divided into a mesh of small cells. In [3] only results

for waveguides with homogeneous rectangular cross section

are presented.

Our boundary integral equation (BIE) technique only re-

quires the discretization of the boundary of the waveguide.

This has several advantages over the DIE methods. The

number of unknowns and the size of the final system-matrix

is drastically reduced because only a one-dimensional (1-D)

boundary has to be discretized instead of a two-dimensional

(2-D) cross-section. In DIE methods, dielectric waveguides

with skew boundaries require the refinement of the mesh

in order to accurately describe the bounddry. This increases

the number of unknowns. The mesh also has to be refined

when losses become important in order to accurately represent

the rapid field changes due to the skin effect. The same

2-D mesh problems also arise in FEM, FDM, FDTD, and

TLM methods. In the BIE technique, ho increase of the

number of discretizations is necessary for skew sides or

losses. On the other hand, the BIE technique is not suited to

analyze waveguides with inhomogeneous cross-sections. This

would require the division of the waveguide into a numlber

of homogeneous regions and the discretization of all the

boundaries of these regions would result in a large number

of unknowns.

After a description of the geometry and the notations

adopted in this paper, the authors start their discussion with the

construction of the BIE for anisotropic waveguides. Though

the theory is valid for arbitrary shaped waveguides, as in

[1], the authors restrict themselves to polygonal waveguides.

In the example, the authors will show that curved waveguides

are accurately approximated by polygonal boundaries. After

the construction of the BIE, the authors will give a short
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III. CONSTRUCTION OF THE INTEGRAL EQUATION

Fig. 1. Geometry of general coupled dielectric waveguides in a multi-

layered medium.

overview of its solution technique. In this paper, attention

will be focused on the examples. Examples with losses, gain,

anisotropy, and very general cross-sections are presented and

where possible compared with analytical results and results

in [3]. To the authors knowledge, it is the first time that

the change in behavior from a pure dielectric waveguide,

embedded in a multilayered medium, to a perfectly conducting

one, by gradually increasing the conductivity is analyzed.

The authors finally would like to emphasize that with

the term “dielectric waveguide” they only mean the local

disturbance of the layered medium and not the whole layered

structure including that disturbance.

II. GEOMETRY OF THE PROBLEM

Fig. 1 shows the geometry of the analyzed structures.

There are L layers and the authors will use the subscript

i(i=l,2, ..., L) to refer to the ith layer. Each layer consists

of homogeneous and isotropic material characterized by an

arbitrary complex permittivity Si and complex permeabil-

ity pi.

A total number of W waveguides are embedded in the

layered medium and the subscript j, (.j = 1,2, ” ~”, W) refers

to the jth waveguide. Because a waveguide can be located

in more than one layer we use the notation Wi to indicate

the total number of waveguides in layer i while the subscript

ij, (j=l,2, ..., Wi) refers to the ijth waveguide in layer i.

Each waveguide j consists of homogeneous and anisotropic

material characterized by a permittivity tensor Ej and per-

meability tensor Dj which take the following form in the

coordinate system of Fig. 1:

&l,j o 0 M,j o 0
Fj = o Et,j o ~j = () ,4(j o (1)

00 Et,j 00 Pt,j

Ez,j, respectively, &t,j and I-Q,j, respectively, ,LQ,i are the

longitudinal, respectively, transversal complex permittivity

and permeability. The boundary of waveguide j is denoted

by Cj. Note that c~j is the boundary of the ijth waveguide in

layer i. nj is the external normal to Cj and rj (y, .z) is the

position vector in the (y, .z) plane of a point on cj.

A. Introduction

The common time and longitudinal dependence e~(~t–o’)

in all field components, with w the pulsation and ~ the

complex propagation constant, is omitted. As in [1], the

unknown sources of the integral equation are the tangential

fields nj x 13(rj) and nj x ~(rj) at the boundaries of

the waveguides. These tangential fields consist of components

in the cross-section Et (r ~), Ht (rj ) and kwitudinal com-

ponents E. (rj), H. (rj). ‘k electromagnetic fields inside

and outside the waveguides are expressed as contour integrals

along the boundaries of the waveguides as function of the un-

known sources. The final integral equation is found by impos-

ing the continuity of the tangential fields at the boundaries of

the waveguides.

B. Inside a Waveguide

Consider waveguide j at the right side of Fig. 1 with

boundary Cj consisting of homogeneous Uniaxial anisotroPic

material. Elimination of Ey, E., Hv, and HZ in Maxwell’s

equations results in the following Helmholtz equation for Ez:

For H. one obtains an analogous equation as follows:

(2)

(3)

More general anisotropic permittivity and permeability tensors

do not result in simple Helmholtz differential equations for the

longitudinal field components.

As is explained in [1], using Green’s identity and the

coordinate system (tj, nj ) of Fig. 1, it can be shown that

the longitudinal field components inside the waveguide can
be expressed as a contour integral along the boundary cj

with y;, ~ = w2&t,jlJt,j – ~2 and with GE,j (r I r’) and

GH,j (r I T’) the 2-D homogeneous space Green’s functions

of the Helmholtz equations (2) and (3)

Gqj(?’ \ r’) = ~H~2)(T~,jlr – r’1)

GH,j(r Ir’) = +f&)(yH,jlr–7“1). (5)
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H$) is the Hankel function of the second kind and zeroth

order. From (4), it follows that Em, ~ (r) and Hz,j (r) are fully

determined in every point r inside Ci if Ez,j, Hz,j, Et,j, and

Ht,j and hence dEz,j /dt and dHz,j/& are known on the

boundary Cj.

C. Outside The Waveguides

In [1] the authors obtained the following expressions for the

longitudinal fields inside layer i outside the waveguides:

17$ij and H$i, are the longitudinal incoming field compo-

nents generated by the ijth waveguide in layer i as if this

layer fills up whole space. These field components are given

by the following:

Hin,
X,23

with

with iO = 1, 2, .0. , Wi and i = 1, 2, . . . . L, riorepresent,s a

point on boundary Cio. The subscript o in the fields at the right-

hand side of (9) refers to the waveguide to which Cio belongs.

At the left-hand side of (9), the limit is taken from outside

boundary Cio while at the right-hand side the limit is taken

.r - from the inside. This homogeneous set of integral equations.

Remark the resemblance with (4). E~i and H$j in (6) are the

longitudinal scattered field components who find their origin

in the scattering in the layered medium of the incoming fields

generated by waveguide i. The authors refer the reader to [1],

[2], or [7] for a discussion of the determination of the scat-

tered fields.

D. The Final Integral Equation

As mentioned above the final integral equation, or more

correct the coupled set of integral equations, is obtained by

imposing the continuity of the integral representations of the

tangential field components inside and outside the waveguide

at the waveguide boundaries:

will only have non-trivial solutions for discrete values of the

propagation constant ~.

IV. NUMERICAL SOLUTION

The detailed solution technique of the integral equation is

presented in [1]. Here the authors will present a short overview

of this technique and restrict themselves to results needed in

Section V.

This set of integral equations is solved numerically witlh a

Gawrkin method of moments. For this purpose the polygonal

boundaries of the waveguides are divided into a number

of segments. The unknown longitudinal field components

Ez,j (rj ) and Hz,j (rj) are expanded in overlapping triangular

basis functions. The transversal tangential field components

Et,j (rj) and Ht,j (rj) are expanded in pulse basis functions.

In the method of Galerkin we test the first two continuity

relations of (9), i.e., the longitudinal field relations, with

pulse functions and the last two relations, i.e., the transversal

tangential relations with overlapping triangular functions. The

integration over the basis functions is called the excitation

integration and the observation integration is the integration

over the test functions.

In a next step the field components (9) are spatially Fourier

transformed and inverse Fourier transformed in they direction.

The inverse Fourier transform is then interchanged with the

limit operation and with the observation integration. The

remaining Fourier transform on the other hand is interchanged

with the excitation integration. This transition to the spatial

Fourier domain allows us to perform both the excitation

and observation integration analytically because the Fourier
transform of the Hankel function appearing in the Green’s

functions (5) and (8) takes a simple form [8] as follows:

1

/
‘mH$2)(~lr – r’l)e

j &g!/’e-rlz-N
~kyy dy = ;

% _m r“
(lo)
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kg is the spectral variable and 172= k; – 72. For the incoming

field components on the right- and left-hand side of (9), any

other direction in the cross-section than the y direction can be

chosen as spatial Fourier transform direction. For the scattered

field components on the left-hand side of (9) it is necessary to

transform in the g direction. This allows us to determine the

transformed scattered fields analytically [1], [2], [7], and [9].

Only the final inverse Fourier transformation has to be

determined numerically. This involves an integration over the

real axes in the complex ky plane. Because of the existence

of poles andlor branch cuts in the spectral scattered fields it is

necessary to deform the integration path into the complex ky

plane. How this is done will be discussed in the next section.

V. INVERSE FOURIER INTEGRATION PATH

FOR THE SCATTERED CONTRIBUTIONS

The integrand of the final inverse Fourier transform takes

the following general form for the scattered contributions

in (9):

/+mf(k,)e,k.AYe-rlAzldkY
J–CC

(11)

~(ky) contains transmission and reflection coefficients of the

layered medium and f(ky ) will exhibit poles corresponding to

the resonances of the layered medium, i.e., corresponding to

the eigenmodes of the layered structure. f (kg) will also have

branch cuts due to the square root in r for the 17’s of the

semi-infinite layers. It is well known [10] that ~ (kg) is an

even function of the I“s of layers with finite thickness. Hence

layers with finite thickness will not yield branch cuts. Now

the authors will discuss how to maneuver the inverse Fourier

transformation integration path through the complex kv plane.

Consider a mode, with complex propagation constant ~,

propagating along the lossless structure on the inset of Fig. 2.

The propagation constants of the modi above cut off of the

layered structure, i.e., the structure of Fig. 2 without the
rectangular waveguide, are denoted by Ah (k = 1, . . . . K) . We

assume that Re(@) is smaller than some of the }~ and larger

than k. = (= w-) . Hence the mode under consideration

is a leaky mode which leaks into surface waves in the substrate

but not into space waves. The propagation constant of the

mode has a positive real part and a negative imaginary part.

The spectral function ~(ky ) for the scattered field components

in (11) has poles at:

and branch points due to the semi-infinite top layer at:

J=_k: b=+ l-i%p (13)

The branch points and the poles are located in the first and third

quadrant of the complex plane (Fig. 2). As shown in [11], the

authors can, for example, define the branch cuts by Im(I’2) = O

and Re (172) < 0. In the complex ky plane these branch cuts are

parts of hyperbolas. In the first quadrant the inverse integration

path has to run above the surface wave poles k~P,k, in order

to incorporate leakage in a correct way, without intersecting

~W+

Fig. 2. Inverse Fourier integration path in the complex kg plane for the
scattered field components of the strip dielectric waveguide in the inset.

the branch cut (curve Cl on Fig. 2) or without circumventing

a k;,P,~ pole, with ~k < Re(~), which has migrated from

the positive imaginary axes into the first quadrant. However

it is allowed to cross the branch cuts but then the part of the

integration path between both branch cuts has to be located in

the other Riemann plane for which Re(I’) < 0 (curve C2 on

Fig. 2) [12]. If the substrate becomes lossy then & becomes

complex with a negative imaginary part. This will also result in

an increase of lIm(~) I but that increase will be less prominent.

The surface wave poles k~P,~ in the first quadrant will migrate

down and eventually end up in the fourth quadrant.

A. Anisotropic

Consider a

VI. CASE STUDIES

Dielectric Fiber

homogeneous dielectric fiber with radius a,

permittivities St,l and cl, 1 and permeabilities Ut,l and ,uZ,l in

an infinite homogeneous space with parameters Et,z, &l,z, pt,2

and ~1,2. In polar coordinates it is easy to analytically de-

termine the equation for the propagation constants of the

modi propagating along this structure. If one parallels the

derivation presented in [13] for the isotropic case, one obtains

the following equation for the anisotropic case:

%-i’)z’- %’1%mK:k
&t)2p,t ~UHWE J~(uH) K’ (WE)

+ &~,2~t,2.E.H K~(wE) K~(wH)

7;,2 Kn(wE) Kn(wH)

&t,l~t,2UE’WH J~(uE) K~(wH)
—

T?, 1%,2 J.(uE) Kn(w~)

+ st,l~t,luEu~ J~(uE) J~(u~)

‘%,1 Jn(uE) Jn(uH)

(14)

with

‘E=a’E1=aR
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TABLE I
COMPARISONBETWEEN THE NORMALIZED PROPAGATIONCONSTANTS$/k. OF THE MODI OF A DIELECTRIC IsomoPIc AND

ANISOTROPIC FIBER APPROXIMATEDBY A HEXAGON AND m OCTAGONAND THE FACT ANWYTICAL RBSULTS.

Isotropic dielectric fiber zr,~,l = 6,,1, ~ = 2.55

Circular Hexagon Octagon
—

2 divisions 3 divisions 4 divisions
4

analytical solution (14)
2 divisions 3 divisions

per side per side
divisions

per side per side per side
per side—

HE11 1.40486 1.40418 1.40396 1.40393 1.40464 1.40454 1.40451
TEO1 1.18199 1.18299 1.17918 1.17838 1.18195 1.18078 1.18050
TMOI 1.10756 1.11141 1.10979 1.10955 1.10862 1.10831 1.10827
HE21 1.08008 1.07708 1.07900 1.07954 1.07892 1.07968 1.07962

Anisotropic dielectric fiber Cr,t,1 = 2.55 and 6,,1,1 = 2.00

Circular Hexagon Octagon
—

2 divisions 3 divisions
4

analytical solution (14) divisions
2 divisions 3 divisions 4 divisions

per side per side
per side

per side per side per side
.

HE11 1.38340 1.38412 1.38408 1.38409 1.38900 1.38427 1.38426
TEO 1 1.18199 1.18292 1.17891 1.17808 1.18499 1.18069 1.18038
TMOI 1.05390 1.05693 1.05624 1.05620 1.05381 1.05471 1.05473

HE21 1.04531 1.04641 1.04832 1.04882 1.04743 1.04847 1.04867

dWH =a1~H,21=a ~2B –W2~l,2Et,2 (15)
Pt,’

with n = 0,1,2,... and Km the nth-order modified Bessel

function of the second kind. yt,l and -yt,’ are defined by similar

expressions as in (9).

The authors verified their method for a dielectric fiber

(P.,t,l= /&,z,I= 1) with radius a = 0.29718 cm and
ET,t,l = 2.55 located in free space for ST,I,l = 2.55

and ET,t,I = 2 at a frequency j = 42 GHz. The fiber

is approximated by a regular polygon with the same

area as the fiber. Table I presents results for the 4

modes above cut off at 42 GHz (Optical nomenclature:

HEII (n = 1), TEOI (n = O), TMO1 (n = O), and HEz1 (n =

2)) for a polygon with 6 and 8 sides and with 2, 3, and 4

discretization segments on each side. The results are compared

with exact solutions obtained with (14). A reasonable accuracy

of at least 0.5T0 is obtained for a hexagon with two segments

on each side. Remark that the anisotropy of the permittivity

has no influence on the TEO1 mode which has no longitudinal

electric field component.

B. Rib Waveguide

Fig. 3(a) respectively, Fig. 3(b) shows the real, respectively,
imaginary part of ~/k. of the Efl mode of a dielectric rib

waveguide [inset of Fig. 3(a)] as a function of the width w

of the waveguide. The structure is isotropic and analyzed at a

frequency of 30 GHz and hence a free space wavelength Jo =

27r/ko ~ 1 cm. Results are found to be in good agreement with

results obtained in [3]. Remark that the maxima and dips in

the imaginary part due to leakage and cancellation phenomena

are found back at the same values of w as in [3].

In Fig. 4 the authors analyzed the same rib waveguide as

above, with w = 2.5A0, as a function of the longitudinal

permittivity sr.,1 of the waveguide while the relative transver-

sal permittivity was kept at 2.8224. They considered two

modes: E~l and Efl. The E~l mode, which is above cut

off (Im(/3) = O), is almost not influenced by the variation

of Sr,z because this mode has almost no longitudinal electric

field component. Re(/3/ko) of the l?fl mode on the other

hand increases strongly when &.)l increases. At ST,l ~ 4.75

the propagation constant of the E~l mode becomes equal to

the propagation constant of the TEO mode of the underlaying

layered medium (also shown on Fig. 4). At this point, the l?~l

mode comes above cut off and ~/k. becomes real. Notice a

small coupling effect at this point. At Er,z ~ 7.5 the lines of

the propagation constants of the Efl and E~l mode cross. This

means that the coupling between the two modes is negligibly

small. If the two modes would have coupled the lines of the

propagation constants would not cross but would bend away

from each other.

In a next step the authors investigated the influence of the

conductivity of the semi-infinite bottom layer on the propaga-

tion constant of the lowest order mode, i.e., on E~l. For this

purpose, the authors increased the loss tangent tgti of the selmi-

infinite bottom layer from zero to infinity. Hence, the complex

dielectric constant of the semi-infinite layer was selected to be

2.1904(1 – jtgt$). The width of the rib waveguide was fixed

at w = 2A0. The complex propagation constant as a function

of log(t gd) is shown on Fig. 5. The authors start for t g6 == O

with the E~l mode with ,b/ko = 1.61520. When tgti increases

the real part of ~/k. does not change much and the imaginary

part of l!?/ko increases proportional with tgd. In the transition

region (O.1< tg6 < 100) the real part of /3 drops suddenly

and the imaginary part goes through a maximum. In this region
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1.61 Re(piko)

1 EIEza

(a)

-43 Log [-Im( ~j ko)]

.4 9% I— Results in [3]1
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-7

f

-. \rE;l

o
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01234.56789
W12L0

(b)

l.fj2– MPJko) L@. -M B/ $+1-..-3

/

1.615 - E~l

1.61 ~ ~ --4

- ‘o
1.605~

1.6: --5

1.595:

1.59- ,!, !,,,, ,,,, ! !,,, !,,,, !!, >!,,,,.!! -6

1 2 3 4e5 6 7 8
r,l

Fig. 4. Real and imaginary part of the propagation constants of the -E~l
and 13:1 mode at 30 GHz as a function of the longitudinal dielectric constant

s,, t of the waveguide for the rib waveguide on the inset of Fig. 3(a) with
w = 2.5A0.

1.621 Re(Piko)
‘og[ ‘lm ( p ‘ ‘o)] FO

mf--6

-4 -202468.,

Fig. 3 (a) Real part of the propagation constant of the 13fl mode of the
Log(tg 8 )

dielectric rib waveguide, shown on the inset, at 30 GHz and as a function of
the width W. (fJ) Imaginary part of the propagation constant of the 13fl mode

Fig. 5. Real and imaginary part of the propagation constant of the JZyl mode

of the dielectric rib waveguide shown on the inset of (a), at 30 GHz and as
at 30 GHz as a function of loss tangent tgti of the semi infinite bottom layer

a function of the width w.
of the rib waveguide on the inset of Fig. 3(a) with w = 2A..

the fields are pushed out of the semi-infinite layer. When tgr$

further increases, the real part of @/k. remains again almost

constant and the imaginary part of ,f3/ko decreases proportional

with tgti. The final situation is this where the bottom layer is

perfectly conducting. In that case, the imaginary part of @/k.

becomes zero and ~/k. = 1.58179.

Finally, in Fig. 6 the authors start again from the original

rib waveguide of Fig. 3(a) but we now selected a trapezoidal

cross section for the waveguide. The bottom width w is kept

at 2 ~. and the top width t is changed from O to 4 A.. Fig. 7

shows the evolution of the complex propagation constant of

the 13fl mode. Fig. 6, Geometry of a dielectric rib waveguide with trapezoidal cross-section.

C. Strip Dielectric Waveguide varied from O up to 75 GHz. The results are found to be in

The geometry and parameters of the analyzed strip dielectric excellent agreement with results in [3]. The only difference

waveguide are shown on Fig. 8. Fig. 9(a) shows the real part between the authors results and those in [3] resides in the fact

and Fig. 9(b) shows the imaginary part of the propagation that they found a smooth curve without a dip (see enlargement

constants of the five lowest modes when the frequency is on the right Fig. 9(b)) for the imaginary part of @/k. of
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l.fgf~-s.s
O 0.5 1 1.5 2 2.5 3 3.5 4,

tlko

Fig. 7. Realandimaginarypart of thepropagationconstantof theEfl mode
at 30 GHz as a function of the top width t for the rib wave.grride of Fig. 6

with w = 2A0.

Fig. 8. Geometry of a strip dielectric waveguide.

the E;z mode. The authors believe that their result is more

accurate because the other curves on Fig. 9(b) are also smooth

and because the dip in [3] remains unexplained.

As a next example, the authors studied the transition from

the strip dielectric waveguide of Fig. 8 to a perfectly con-

ducting microstrip by changing the tgti of the waveguide

region from zero to infinity. The evolution of the complex

propagation constant of the lowest order mode is shown on

Fig. 10. The authors start in region 1 with the ll;l mode

above cut off at tg6 = O. When tgd increases, the real

part of /3/k. remains almost constant and the imaginary part

of ~/ko increases proportionality with tgr5. From tgr$ = 0.1

on, the fields are pushed out of the waveguide into the

air and the real part of /3/ko decreases. At this point, the

imaginary part does not increase any further. At the right

side of Fig. 10, in region 3, the authors start with the quasi-
TEM mode of the microstrip. The imaginary part of ,8/ko

increases proportionally with the decrease of tgr$. The fields

start to penetrate inside the conductor. When tgd decreases

further, the real part of f?/ko starts to increase because the

fields see a higher dielectric constant inside the waveguide.

At tgd x 40 the real part of /3/k. starts to decrease again.

The authors think that this is due to the fact that the mode is

o 20 40 fib 80
frequency (GHz)

(a)

-1.5 Log[ -fm(~j ko)l
E~2

-2

1L*
%2

E:2+

-2.5 0 0

-3

-3.5 E~l

-44 \

o 20 40 60 80
frequency (GHz)

(b)

-2.1

b

0 %2

00

-2.6
d;p

30 40 Jo

Fig. 9. (a) Real part of the propagation constants of the lowest five modes
of the structure of Fig. 8 when the frequency is varied from O up to 75 GHz.
(b) Imaginary part of the propagation constants of the lowest five modes of

the structure of Fig. 8 when the frequency is varied from O up to 75 GHz.

disappearing. Indeed the quasi-TEM mode cannot exist wlhen

tgr5 = O because electric field lines cannot originate from a

dielectric, while it is precisely for the quasi-TEM mode that the

transversal electric field lines start inside the waveguide ;and

go to the ground plane. In the transition region 2 the authors

found a whole set of modes with closely spaced propagation

constants. The figure shows the real and imaginary part of the

propagation constant of one such mode. They lost track of

the l?~l mode and the quasi-TEM mode in this region. The

authors think that the mode concept loses significance inside

this region.

Finally, Fig. 11 shows the propagation constant of the Efl

mode of the strip dielectric waveguide of Fig. 8 when gaim is

introduced in the waveguide. The gain is characterized by a

negative loss tangent. Hence the complex relative permittivity
of the waveguide is given by 2.55(1 – jtg6) with tgb <: 0.
If the dimensions of the structure and at the same time the

frequencies are scaled to optical dimensions and frequencies,

then the structure can be a model for a semiconductor laser.

Notice the proportional increase of the imaginary part of @/ko

with the increase of –tg6.
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Fig. 10. Real and imaginary part of the propagation constant of the lowest

order mode at 42 GHz as a function of the loss tangent tgd of the waveguide
of Fig. t3. Region 1: E;l mode. Region 2: transition region. Region 3:

quasi-TEM mode.
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Fig. 11. Real and imaginary part of the propagation constant of the J3~l
mode at 42 GHz as a function of the gain (characterized by –tgc$) of the

waveguide of Fig. 8.
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