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Rigorous Boundary Integral Equation Solution

for General Isotropic and Uniaxial Anisotropic

Dielectric Waveguides in Multilayered Media
Including Losses, Gain and Leakage

Frank Olyslager, Student Member, IEEE, and Daniél De Zutter, Member, IEEE

Abstract—Bounded and leaky eigenmodes of arbitrary shaped
polygonal dielectric waveguides embedded in a multilayered
medium are determined based on a rigorous full-wave analysis.
The dielectric waveguides consist of isotropic or uniaxial aniso-
tropic material. Losses and gain inside the layers and the
waveguides are allowed. The eigenmodes are determined with
a boundary integral equation technique in conjunction with the
method of moments. Results for the propagation constants are
presented for a number of waveguides and, where possible,
compared with published data. Special attention is devoted to the
transition from a dielectric waveguide to a perfectly conducting
waveguide when the loss tangent of the waveguide material
changes from zero to infinity.

I. INTRODUCTION

N [1] and [2] a rigorous analysis of the propagation

characteristics of general lossless and lossy multiconduc-
tor transmission lines in multilayered media was presented.
In this contribution, the authors would like to extend the
technique presented in [1] and [2] to dielectric waveguides.
The boundary integral equation presented in [1] is extended
to uniaxial anisotropic waveguides with the optical axes along
the propagation direction. The method of moment Galerkin
solution technique of the integral equation is the same as in
[1] and will not be repeated in detail here.

Dielectric waveguides have been investigated by a large
number of authors, using a multitude of different methods.
We will restrict ourselves to giving a short overview of the
most important analysis techniques and discuss the properties
of our technique compared to these techniques. A more
extensive discussion of various techniques can be found in
the Introduction of [3] and in [4] where a number of different
techniques were used to analyze optical waveguides.

Several authors used the mode-matching technique to ana-
lyze open and closed dielectric waveguide structures. How-
ever, these methods are restricted to waveguides consisting
of piecewise rectangular homogeneous regions. Finite element
(FEM) and finite difference methods (FDM), used for example
in [5], allow inhomogeneous regions but do not incorporate
leakage. The finite difference time domain {(FDTD) and the
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transmission line method (TLM) suffer from the lack of
accurate absorbing boundary conditions and are not very suited
for frequency domain calculations with frequency-dependent
material parameters and to handle losses due to the skin effect.
Dielectric waveguides in multilayered media have also been
analyzed with good success with domain integral equation
(DIE) techniques [3], [6}. In [3] and [6] a method of moments
technique combined with Galerkin is used. This technique is
very suitable to analyze inhomogeneous waveguides because
in the moment method the cross-section of the waveguide
is divided into a mesh of small cells. In [3] only results
for waveguides with homogeneous rectangular cross section
are presented.

Our boundary integral equation (BIE) technique only re-
quires the discretization of the boundary of the waveguide.
This has several advantages over the DIE methods. The
number of unknowns and the size of the final system-matrix
is drastically reduced because only a one-dimensional (1-D)
boundary has to be discretized instead of a two-dimensional
(2-D) cross-section. In DIE methods, dielectric waveguides
with skew boundaries require the refinement of the mesh
in order to accurately describe the bounddry. This increases
the number of unknowns. The mesh also has to be refined
when losses become important in order to accurately represent
the rapid field changes due to the skin effect. The same
2-D mesh problems also arise in FEM, FDM, FDTD, and
TLM methods. In the BIE technique, ho increase of the
number of discretizations is necessary for skew sides or
losses. On the other hand, the BIE technique is not suited to
analyze waveguides with inhomogeneous cross-sections. This
would require the division of the waveguide into a number
of homogeneous regions and the discretization of all the
boundaries of these regions would result in a large number
of unknowns.

After a description of the geometry and the notations
adopted in this paper, the authors start their discussion with the
construction of the BIE for anisotropic waveguides. Though
the theory is valid for arbitrary shaped waveguides, as in
[1], the authors restrict themselves to polygonal waveguides.
In the example, the authors will show that curved waveguides
are accurately approximated by polygonal boundaries. After
the construction of the BIFE, the authors will give a short
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Fig. 1. Geometry of general coupled dielectric waveguides in a multi-
layered medium.

overview of its solution technique. In this paper, attention
will be focused on the examples. Examples with losses, gain,
anisotropy, and very general cross-sections are presented and
where. possible compared with analytical results and results
in [3]. To the authors knowledge, it is the first time that
the change in behavior from a pure dielectric waveguide,
embedded in a multilayered medium, to a perfectly conducting
one, by gradually increasing the conductivity is analyzed.

The authors finally would like to emphasize that with
the term “dielectric waveguide” they only mean the local
disturbance of the layered medium and not the whole layered
structure including that disturbance.

II. GEOMETRY OF THE PROBLEM

Fig. 1 shows the geometry of the analyzed structures.
There are L layers and the authors will use the subscript
i(i=1,2,---,L) to refer to the ith layer. Each layer consists
of homogeneous and isotropic material characterized by an
arbitrary complex permittivity ¢; and complex permeabil-
ity ps. :

A total number of W waveguides are embedded in the
layered medium and the subscript j, (j = 1,2, -+, W) refers
to the jth waveguide. Because a waveguide can be located
in more than one layer we use the notation W; to indicate
the total number of waveguides in layer ¢ while the subscript
i;, (j =1,2,---, W;) refers to the i;th waveguide in layer 3.

Each waveguide j consists of homogeneous and anisotropic
material characterized by a permittivity tensor g; and per-
meability tensor 7z; which take the following form in the
coordinate system of Fig. 1:

€L 0 0 i, 0 0
g=|0 e; O mi=1 0 my; 0| ()
0 0 ey 0 0

€1, respectively, &;; and py;, respectively, py; are the
longitudinal, respectively, transversal complex permittivity
and permeability. The boundary of waveguide j is denoted
by ¢;. Note that ¢;; is the boundary of the ;th waveguide in
layer ¢. m; is the external normal to c¢; and r;(y,2) is the
position vector in the (y, 2) plane of a point on c;.
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III. CONSTRUCTION OF THE INTEGRAL EQUATION

A. Introduction

The common time and longitudinal dependence ei(wt=pz)
in all field components, with w the pulsation and 3 the
complex propagation constant, is omitted. As in [1], the
unknown sources of the integral equation are the tangential
fields n; x E(r;) and m; x H(r;) at the boundaries of
the waveguides. These tangential fields consist of components
in the cross-section E;(r;), Hy(r;) and longitudinal com-
ponents E,(r;), Hy(r;). The electromagnetic fields inside
and outside the waveguides are expressed as contour integrals
along the boundaries of the waveguides as function of the un-
known sources. The final integral equation is found by impos-
ing the continuity of the tangential fields at the boundaries of
the waveguides.

B. Inside a Waveguide

Consider waveguide j at the right side of Fig. 1 with
boundary ¢; consisting of homogeneous uniaxial anisotropic
material. Elimination of E,, E,, Hy,, and H, in Maxwell’s
equations results in the following Helmholtz equation for £,

0’E, O%E, 2

oz T oz el =0
€l,j

'Y?L‘,j = w2€l,jut,j - /32 =L, 2
8t7j

For H, one obtains an analogous equation as follows:

0’H, 0°H, 9

g T g e =0
Hi,j

’Y%{,j = wpy jer; — B —l . 3)
Ht,j

More general anisotropic permittivity and permeability tensors
do not result in simple Helmholtz differential equations for the
longitudinal field components.

As is explained in [1], using Green’s identity and the
coordinate system (t;,m;) of Fig. 1, it can be shown that
the longitudinal field components inside the waveguide can
be expressed as a contour integral along the boundary ¢;

G ; 1
estr) = §,[Bos Tt - G
Cj 7

37 watJ
oH, ; .
|- +J’Yt2,th,j dc’
o,
oGy, 1
Hos(r) = § |Hos 500 =Gy
cj V)

with 72, = w?e;jus; — B° and with Gg;(r|7r’) and
Gp, i(r|r’) the 2-D homogeneous space Green’s functions
of the Helmholtz equations (2) and (3)

J
Gp(r|r) = TH (v lr — ')

Gry(r 1) = THS (vl = ')). )
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H{? is the Hankel function of the second kind and zeroth
order. From (4), it follows that F, ;(r) and H, ;(r) are fully
determined in every point r inside ¢; if E, ;, H; ;, E; ;, and
H; ; and hence OF, ;/0t and OH, ;/0t are known on the
boundary c;.

C. Outside The Waveguides

In [1] the authors obtained the following expressions for the
longitudinal fields inside layer i outside the waveguides:

W.

w
Eei(r) =) EZ, (r)+ Y EX5(r);
2,=1 j=1
W,
Hoi(r) =) HI;(r ZHSC ©
iy=1
E;“lj and Hg‘c“z] are the longitudinal incoming field compo-

nents generated by the i;th waveguide in layer ¢ as if this
layer fills up whole space. These field components are given
by the following:

0G; 1
E® (r)=—¢ |Bpi i _G;
mj( " ji |: e Bngj We;
3

0H, ;
-(—ﬂ 3, — +JVthzJ)]dC/
0G; 1
Hm J— ek L
Bm=-¢ [H SO o
aE:c,iJ .
: (ﬂw —J’YizEt,z,>:| de’ Q)
with
j(z),_/ 2_ 2. 02
('l"l?") H (’er r |) ’Yi =w ezﬂz_ﬁ . (8)

Remark the resemblance with (4). EZS; and HgS; in (6) are the
longitudinal scattered fieild components who ﬁnd their origin
in the scattering in the layered medium of the incoming fields
generated by waveguide ¢. The authors refer the reader to [1],
[2], or [7] for a discussion of the determination of the scat-
tered fields.

D. The Final Integral Equation

As mentioned above the final integral equation, or more
correct the coupled set of integral equations, is obtained by
imposing the continuity of the integral representations of the
tangential field components inside and outside the waveguide
at the waveguide boundaries:

w
lim ZE;‘}ZJ(r)—{—ZE;fi(r) = lim E,,(r)
T——)’I‘,L Z]—l ]=1 ’I‘—Vl‘zo
W, w
Jm [Z Hl (r +ZH2‘?<’”)] = lim H,o(r)
i, =1 =1 T

w. . in . in
i[5 (22208 20058
o, | 4 ¥2  On v2 ot
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jops OHZ, 8 OB,
+ Z ( n 7 ot

. .]wll!t,o aHm Jﬂ aEm
= lim T Y — e
’Yt,o on 'Yt,o 8t

P,
. in
Jwe; aEw,iJ

W;
i [Z (“ 32

ij=1

_ B 2R,
on 42 ot

+§_V: (_ jwei OB, jBOHY )
et ¥ On 47 Ot
jwey o R, j3 OH
g (Bt gpohn)
T=Te ’Yt,o n ’Yt,o t

withi, =1,2, ..., Wyandi=1, 2, ---, L. ; represents a
point on boundary c;, . The subscript o in the fields at the right-
hand side of (9) refers to the waveguide to which ¢; belongs.
At the left-hand side of (9), the limit is taken from outside
boundary c;, while at the right-hand side the limit is taken
from the inside. This homogeneous set of integral equations
will only have non-trivial solutions for discrete values of the
propagation constant 3.

IV. NUMERICAL SOLUTION

The detailed solution technique of the integral equation is
presented in [1]. Here the authors will present a short overview
of this technique and restrict themselves to results needed in
Section V.

This set of integral equations is solved numerically with a
Gaierkin method of moments. For this purpose the polygonal
boundaries of the waveguides are divided into a number
of segments. The unknown longitudinal field components
E. ;(r;) and H, ;(r;) are expanded in overlapping triangular
basis functions. The transversal tangential field components
E: j(r;) and H, ;(r;) are expanded in pulse basis functions.
In the method of Galerkin we test the first two continuity
relations of (9), ie., the longitudinal field relations, with
pulse functions and the last two relations, i.e., the transversal
tangential relations with overlapping triangular functions. The
integration over the basis functions is called the excitation
integration and the observation integration is the integration
over the test functions.

In a next step the field components (9) are spatially Fourier
transformed and inverse Fourier transformed in the y direction.
The inverse Fourier transform is then interchanged with the
limit operation and with the observation integration. The
remaining Fourier transform on the other hand is interchanged
with the excitation integration. This transition to the spatial
Fourier domain allows us to perform both the excitation
and observation integration analytically because the Fourier
transform of the Hankel function appearing in the Green’s
functions (5) and (8) takes a simple form [8] as follows:

1ot (2) ik J ek o=T|2=7|
i H — Iy oy = 2 —
3 [ HD Gl = ety = L

(10)
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ky is the spectral variable and I'? = k2 —~2 . For the incoming
field components on the right- and left-hand side of (9), any
other direction in the cross-section than the y direction can be
chosen as spatial Fourier transform direction. For the scattered
field components on the left-hand side of (9) it is necessary to
transform in the y direction. This allows us to determine the
transformed scattered fields analytically [1], [2], [7], and [9].

Only the final inverse Fourier transformation has to be
determined numerically. This involves an integration over the
real axes in the complex &, plane. Because of the existence
of poles and/or branch cuts in the spectral scattered fields it is
necessary to deform the integration path into the complex £,
plane. How this is done will be discussed in the next section.

V. INVERSE FOURIER INTEGRATION PATH
FOR THE SCATTERED CONTRIBUTIONS

The integrand of the final inverse Fourier transform takes
the following general form for the scattered contributions
in (9):

+o0o
/ Fky)ed*vBveTIAzl gp (11)
— 0

f(ky) contains transmission and refiection coefficients of the
layered medium and f(k,) will exhibit poles corresponding to
the resonances of the layered medium, i.e., corresponding to
the eigenmodes of the layered structure. f(k,) will also have
branch cuts due to the square root in I' for the I'’s of the
semi-infinite layers. It is well known [10] that f(k,) is an
even function of the I'’s of layers with finite thickness. Hence
layers with finite thickness will not yield branch cuts. Now
the authors will discuss how to maneuver the inverse Fourier
transformation integration path through the complex &, plane.

Consider a mode, with complex propagation constant g,
propagating along the lossless structure on the inset of Fig. 2.
The propagation constants of the modi above cut off of the
layered structure, i.e., the structure of Fig. 2 without the
rectangular waveguide, are denoted by A (k =1,---, K). We
assume that Re(3) is smaller than some of the A, and larger
than kg = (: w+/Eotho ) . Hence the mode under consideration
is a leaky mode which leaks into surface waves in the substrate
but not into space waves. The propagation constant of the
mode has a positive real part and a negative imaginary part.
The spectral function f(k,) for the scattered field components
in (11) has poles at:

by px = T/ — 52 (12)
and branch points due to the semi-infinite top layer at:
kjb = +4/k2 — 2. (13)

The branch points and the poles are located in the first and third
quadrant of the complex plane (Fig. 2). As shown in [11], the
authors can, for example, define the branch cuts by Im(I'?) = 0
and Re(I'?) < 0. In the complex k, plane these branch cuts are
parts of hyperbolas. In the first quadrant the inverse integration
path has to run above the surface wave poles ky b,k in order
to incorporate leakage in a correct way, without intersecting
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Im(k,)

Re(ky)

Fig. 2. Inverse Fourier integration path in the complex k, plane for the
scattered field components of the strip dielectric waveguide in the inset.

the branch cut (curve C; on Fig. 2) or without circumventing
a k,,, pole, with Ay < Re(f), which has migrated from
the positive imaginary axes into the first quadrant. However
it is allowed to cross the branch cuts but then the part of the
integration path between both branch cuts has to be located in
the other Riemann plane for which Re(I") < 0 (curve C; on
Fig. 2) [12]. If the substrate becomes lossy then A, becomes
complex with a negative imaginary part. This will also result in
an increase of |Im(/3)| but that increase will be less prominent.
The surface wave poles k; »,x 1 the first quadrant will migrate
down and eventually end up in the fourth quadrant.

VI. CASE STUDIES

A. Anisotropic Dielectric Fiber

Consider a homogeneous dielectric fiber with radius a,
permittivities £; 1 and e;; and permeabilities p; 1 and g1 in
an infinite homogeneous space with parameters &; 2, €72, fit,2
and 2. In polar coordinates it is easy to analytically de-
termine the equation for the propagation constants of the
modi propagating along this structure. If one parallels the
derivation presented in [13] for the isotropic case, one obtains
the following equation for the anisotropic case:

2
3%n? 1 1 _
w? %2,1 "/i?,z

+

etaprurwe Jy(ug) K (wg)
7t2,17t2,2 Jn(ug) Kn(wg)
et 2t 2wrwy K, (wg) K, (wg)

’Y?’z Kn(wE) Kn(wH)
_erimourwy Jy(ug) K (wy)
VirVee  Jn(um) Kn(wi)
Et,1 Ut 1 UE UL J, (ug) J) (um)
_I_
Y1 Ju(up) Jn(um)
(14
with
5
Uug = ayp,1 = a\/wzaz,xut,l - p2 L
€t,1
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TABLE I
COMPARISON BETWEEN THE NORMALIZED PROPAGATION CONSTANTS /3/ko OF THE MODI OF A DIELECTRIC ISOTROPIC AND
ANISOTROPIC FIBER APPROXIMATED BY A HEXAGON AND AN OCTAGON AND THE FACT ANALYTICAL RESULTS.
Isotropic dielectric fiber €, ¢,1 = €, 7,1 = 2.55
Circular Hexagon Octagon
analytical solution (14) 2 divisjons 3 divis}ons 4 divis.ions 2 divis.ions 3 divis.ions divi:ion\s
per side per side per side per side per side .

per side

HEq 1.40486 1.40418 1.40396 1.40393 1.40464 1.40454 1.40451
TEo1 1.18199 1.18299 1.17918 1.17838 1.18195 1.18078 1.18050
TMo1 1.10756 1.11141 1.10979 1.10955 1.10862 1.10831 1.10827
HE2; 1.08008 1.07708 1.07900 1.07954 1.07892 1.07968 1.07962

Anisotropic dielectric fiber €,4,1 = 2.55 and £,; 1 = 2.00
Circular Hexagon Octagon
analytical solution (14) 2 lelS.IOIlS 3 lelS.IOIlS divisions 2 d1v1s'10ns 3 d1v1s.10ns 4 d1v1s.10ns
per side per side . per side per side per side
per side

HEq; 1.38340 1.38412 1.38408 1.38409 1.38900 1.38427 1.38426
TEo: 1.18199 1.18292 1.17891 1.17808 1.18499 1.18069 1.18038
TMop1 1.05390 1.05693 1.05624 1.05620 1.05381 1.05471 1.05473
HE»2; 1.04531 1.04641 1.04832 1.04882 1.04743 1.04847 1.04867

2 P11

Ug = aYH1 =G w2ﬂl,18t,1 - p
Hi,1

€1,2
wg = a|ye2| = a\/ﬂ2 P W251,2Mt,2
t,2

(15)

with n = 0, 1, 2,--- and K,, the nth-order modified Bessel
function of the second kind. -y; 1 and y; 2 are defined by similar
expressions as in (9).

The authors verified their method for a dielectric fiber
(trt1 = prg1 =1) with radius o 0.29718 cm and
€rt,1 = 2.55 located in free space for e, 2.55
and &,;; = 2 at a frequency f 42 GHz. The fiber
is approximated by a regular polygon with the same
area as the fiber. Table I presents results for the 4
modes above cut off at 42 GHz (Optical nomenclature:
HE11 (n = 1), TE01 ('fL = 0), TMOl (n = 0), and HE21 (n =
2)) for a polygon with 6 and 8 sides and with 2, 3, and 4
discretization segments on each side. The results are compared
with exact solutions obtained with (14). A reasonable accuracy
of at least 0.5% is obtained for a hexagon with two segments
on each side. Remark that the anisotropy of the permittivity
has no influence on the TEg; mode which has no longitudinal
electric field component.

M2
wy = alyg2| = a, |2 —= — w262
Ht,2

B. Rib Waveguide

Fig. 3(a) respectively, Fig. 3(b) shows the real, respectively,
imaginary part of 8/ko of the Ef; mode of a dielectric rib
waveguide [inset of Fig. 3(a)] as a function of the width w
of the waveguide. The structure is isotropic and analyzed at a
frequency of 30 GHz and hence a free space wavelength Ag =
27 /ko = 1 cm. Results are found to be in good agreement with
results obtained in [3]. Remark that the maxima and dips in

the imaginary part due to leakage and cancellation phenomena
are found back at the same values of w as in [3].

In Fig. 4 the authors analyzed the same rib waveguide as
above, with w = 2.5}y, as a function of the longitudinal
permittivity e, ; of the waveguide while the relative transver-
sal permittivity was kept at 2.8224. They considered two
modes: EY, and F%. The EY, mode, which is above cut
off (Im(3) = 0), is almost not influenced by the variation
of e,; because this mode has almost no longitudinal electric
field component. Re(8/ko) of the E#; mode on the other
hand increases strongly when ¢, ; increases. At e,; = 4.75
the propagation constant of the £%; mode becomes equal to
the propagation constant of the TEq mode of the underlaying
layered medium (also shown on Fig. 4). At this point, the EF;
mode comes above cut off and §/ky becomes real. Notice a
small coupling effect at this point. At e,; = 7.5 the lines of
the propagation constants of the Ef; and EY; mode cross. This
means that the coupling between the two modes is negligibly
small. If the two modes would have coupled the lines of the
propagation constants would not cross but would bend away
from each other.

In a next step the authors investigated the influence of the
conductivity of the semi-infinite bottom layer on the propaga-
tion constant of the lowest order mode, i.e., on EY;. For this
purpose, the authors increased the loss tangent tgé of the semi-
infinite bottom layer from zero to infinity. Hence, the complex
dielectric constant of the semi-infinite layer was selected to be
2.1904(1 — jtgd). The width of the rib waveguide was fixed
at w = 2)g. The complex propagation constant as a function
of log(tgé) is shown on Fig. 5. The authors start for tgé = 0
with the EY; mode with 3/ko = 1.61520. When tgd increases
the real part of 3/ko does not change much and the imaginary
part of 3/kq increases proportional with tgé. In the transition
region (0.1 < tgé < 100) the real part of 8 drops suddenly
and the imaginary part goes through a maximum. In this region
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Results in [3]

i o  Qur results

Results in [3]
o  Qur results

01234)?6789

w/ 0
(b)

Fig. 3 (a) Real part of the propagation constant of the EZ; mode of the
dielectric rib waveguide, shown on the inset, at 30 GHz and as a function of
the width w. (b) Imaginary part of the propagation constant of the E%, mode
of the dielectric rib waveguide shown on the inset of (a), at 30 GHz and as
a function of the width w.

the fields are pushed out of the semi-infinite layer. When tgé
further increases, the real part of 3/ky remains again almost
constant and the imaginary part of 3/kq decreases proportional
with tgé. The final situation is this where the bottom layer is
perfectly conducting. In that case, the imaginary part of 3/ko
becomes zero and §/ko = 1.58179,

Finally, in Fig. 6 the authors start again from the original
rib waveguide of Fig. 3(a) but we now selected a trapezoidal
cross section for the waveguide. The bottom width w is kept
at 2 Ao and the top width ¢ is changed from 0 to 4 \g. Fig. 7
shows the evolution of the complex propagation constant of
the F%; mode.

C. Strip Dielectric Waveguide

The geometry and parameters of the analyzed strip dielectric
waveguide are shown on Fig. 8. Fig. 9(a) shows the real part
and Fig. 9(b) shows the imaginary part of the propagation
constants of the five lowest modes when the frequency is
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1.62Re(B/k)) Log[ -Im( B/ k)] -3
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Fig. 4. Real and imaginary part of the propagation constants of the Efl
and E7, mode at 30 GHz as a function of the longitudinal dielectric constant
&r,1 of the waveguide for the rib waveguide on the inset of Fig. 3(a) with
w = 2.5)\0.

1.624Re(B/k)  Log[-Im(B/k)]-0
L61S3— )
1614 1 i
1.605 £ 2
1.6 —D -3
1595 E
1.594 F
1,585 y -5
1.583....,.,,.,....,....,....,,..,'~6
4 2 0 2 4 6 8
Log(tgd)

Fig. 5. Real and imaginary part of the propagation constant of the EY, mode
at 30 GHz as a function of loss tangent tgé of the semi infinite bottom layer
of the rib waveguide on the inset of Fig. 3(a) with w = 2\q.

air

Fig. 6. Geometry of a dielectric rib waveguide with trapezoidal cross-section.

varied from O up to 75 GHz. The results are found to be in
excellent agreement with results in [3]. The only difference
between the authors results and those in [3] resides in the fact
that they found a smooth curve without a dip (see enlargement
on the right Fig. 9(b)) for the imaginary part of 8/ky of
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Logl - Im(B/kp)]__4

AREZ e sy L RARAS Laaas e Lt L

0 05 1 15 2 25 3 35 4
t/?»o

Fig. 7. Real and imaginary part of the propagation constant of the E}; mode
at 30 GHz as a function of the top width ¢ for the rib waveguide of Fig. 6
with w = 2A¢.

air

Fig. 8. Geometry of a strip diclectric waveguide.

the EZ, mode. The authors believe that their result is more

accurate because the other curves on Fig. 9(b) are also smooth
and because the dip in [3] remains unexplained.

As a next example, the authors studied the transition from
the strip dielectric waveguide of Fig. 8 to a perfectly con-
ducting microstrip by changing the tgé of the waveguide
region from zero to infinity. The evolution of the complex
propagation constant of the lowest order mode is shown on
Fig. 10. The authors start in region 1 with the E}; mode
above cut off at tgé = 0. When tgd increases, the real
part of 3/ky remains almost constant and the imaginary part
of B/ky increases proportionally with tgé. From tgé = 0.1
on, the fields are pushed out of the waveguide into the
air and the real part of §/ko decreases. At this point, the
imaginary part does not increase any further. At the right
side of Fig. 10, in région 3, the authors start with the quasi-
TEM mode of the microstrip. The imaginary part of 3/ko
increases proportionally with the decrease of tgé. The fields
start to penetrate inside the conductor. When tgé decreases
further, the real part of 3/kg starts to increase because the
fields see a higher dielectric constant inside the waveguide.
At tgé = 40 the real part of 3/ko starts to decrease again.
The authors think that this is due to the fact that the mode is
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Fig. 9. (a) Real part of the propagation constants of the lowest five modes
of the structure of Fig. 8 when the frequency is varied from 0 up to 75 GHz.
(b) Imaginary part of the propagation constants of the lowest five modes of
the structure of Fig. 8 when the frequency is varied from 0 up to 75 GHz.

disappearing. Indeed the quasi-TEM mode cannot exist when
tgd = O because electric field lines cannot originate from a
dielectric, while it is precisely for the quasi-TEM mode that the
transversal electric field lines start inside the waveguide and
go to the ground plane. In the transition region 2 the authors
found a whole set of modes with closely spaced propagation
constants. The figure shows the real and imaginary part of the
propagation constant of one such mode. They lost track of
the E% mode and the quasi-TEM mode in this region. The
authors think that the mode concept loses significance inside
this region.

Finally, Fig. 11 shows the propagation constant of the Ef;
mode of the strip dielectric waveguide of Fig. 8 when gain is
introduced in the waveguide. The gain is characterized by a
negative loss tangent. Hence the complex relative permittivity
of the waveguide is given by 2.55(1 — jtgé) with tgé < 0.
If the dimensions of the structure and at the same time the
frequencies are scaled to optical dimensions and frequencies,
then the structure can be a model for a semiconductor laser.
Notice the proportional increase of the imaginary part of 3/kqo
with the increase of —tgd.



1392

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 8, AUGUST 1993

161 Re (B/ky) I L|og[ Tm (B/k;)L
1.605 4 @ I@I @ =
1.6 bl : :

3 :__2
1.595 [ —> |
1594/ Tt -3
1.585 1 .
1.58 4T | ;

1 I L5
LTS —> [
1'57—‘"'l"''I""l""l""l'"‘I"“l"“l""h-6

43 2-101 23435

Log(gd)

Fig. 10. Real and imaginary part of the propagation constant of the lowest
order mode at 42 GHz as a function of the loss tangent tgé of the waveguide
of Fig. 8. Region 1: E7, mode. Region 2: transition region. Region 3:
quasi-TEM mode.
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Fig. 11. Real and imaginary part of the propagation constant of the E7{;
mode at 42 GHz as a function of the gain (characterized by —tgé) of the
waveguide of Fig. 8.
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